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A similarity solution for viscous internal waves 

By N. H. THOMAS AND T. N. STEVENSON 
Department of the Mechanics of Fluids, University of Manchester 

(Received 19 January 1972) 

A similarity solution is presented which describes the internal waves generated 
by a simple-harmonic localized disturbance in a stably stratified viscous fluid. 
Some experimental results support the theoretical predictions for the waves in a 
linearly stratified salt solution. 

1. Introduction 
The internal wave system generated by a small simple-harmonic disturbance 

in a density-stratified inviscid non-diffusive liquid has been investigated by 
Gortler (1943) and Mowbray & Rarity (1967). Their shadow and schlieren photo- 
graphs of the phase configuration of the waves in a uniformly stratified salt solu- 
tion confirmed the fundamental result of the linear theory. This predicts that, for 
wavelengths small compared with the scale height of the stratification, waves 
of frequency w propagate in a fluid of natural frequency wo along straight lines 
inclined at  the angle sin-l (w/wo) to the horizontal. 

This paper describes some theoretical and experimental studies of the two- 
dimensional wave system in a viscous fluid. It is shown that the governing 
equations yield a perturbation similarity solution when written in a co-ordinate 
system stationary relative to the undisturbed fluid, with the origin near the 
disturbance and with axes parallel to the group velocity and phase velocity 
vectors in the inviscid wave solution. Apart from an unsteady term the final 
equation resembles the integral form, given by Janowitz (1968), of Long’s (1962) 
solution for the far-field flow generated by a two-dimensional body moving hori- 
zontally in a linearly stratified viscous diffusive fluid. 

2. Similarity solution 
A horizontal two-dimensional body oscillates with frequency w in an un- 

bounded density-stratified viscous incompressible non-diffusive fluid. The mean 
position of the body is near the origin of a Cartesian co-ordinate system Oxoyo, 
which is stationary relative to the undisturbed fluid, with yo measured vertically 
upwards (see figure 1 (b ) ,  plate 1). An exponential distribution of mean density, 
po = p*exp ( -/?yo), implies constant natural frequency oo = (gp)*, where g 
is the acceleration due to gravity and p* and pare constants. A second co-ordinate 
system is defined by the relations x‘ = xo cos 8 + yo sin 8, y’ = xo sin 8 -yo cos 8, 
where 8 is the angle between the Ox’ axis and the horizontal and is given by the 
dispersion relation sin 8 = w/wo for steady-state small amplitude internal waves 
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of short wavelength. The left-handed co-ordinate system is chosen so that Ox' 
and Oy' are parallel to the group velocity and phase velocity vectors of the 
inviscid waves (see figure l (b) ,  plate 1). The velocity components are u' and 
v', the density is p T ,  pT is the viscosity pT the pressure and t' is the time. The 
perturbation variablesp' = pT -po,  p' = pT -po and p' = pT -po are introduced, 
po and po  being the equilibrium values. The equations of continuity and in- 
compressibility are 

and ap' 7+U'7+v ' - - -  apT apT = o, 
at ax ay' 

and the perturbation momentum equations obtained by subtracting the hydro- 
static relations are 

and 

The boundary conditions are 

u', v',p',p' --f 0 as y' --f ~f: co. 

The variables are now rendered dimensionless in the following way: 

t' = t(o, sin 8)-l, x' = x(psin @-I, y' = ya(psin @-I, p' = pap*, 

u' = uagwzl, v' = vaagw;l, p' = pap", p' = paap*g(Btan8)-1, 

where 

p* is the equilibrium viscosity at the horizontal level of the origin and a is a 
constant amplitude coefficient. 

Experiments show that the energy propagating from the disturbance is con- 
fhed to a narrow region centred on the line y = 0. This can be seen in the schlieren 
photograph in figure 1 (a)  (plate 1). Measurements described in the next section 
show that the velocity is essentially parallel to they axis. The solution is therefore 
sought under a boundary-layer type of approximation in which perturbations in 
the x direction are assumed small compared with those in the y direction. It is 
assumed that a 6 1, that the amplitude of oscillation is small, such that a < a, 
and that 8 is not near 0 or &r. The implications of these approximations will be 
discussed lates. 

a = [(wiy*/2g2) tan 8 sin 014, v* = p*/p*. 

Equations (1)-(4) reduce to 
au av -+- = 0, ax ay 
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FIGURE 1. ( a )  Schlieren photograph of an internal wave. The photograph is taken looking 
through the side of the tank and the black vertical line is the cylinder support. ( b )  Diagram 
of'the co-ordinate axes, the phase velocity and the particle displacements in the wave. 
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(7) 

(8) 

where with rl = exp ( - x )  

and r2 = y cot Bexp ( -x). yo = ,uo/,u* and is assumed to be of the form 

ro = po/p* = rl(x) + ar2(x, y) + O(a2) 

Yo = Y h )  + aYz(x, Y) + (?a2)* 

The boundary conditions are u, v, p ,  p 3 0 as y --f & co. 

and may be expanded as 
It is assumed that the perturbation variables have a time dependency e-it 

u = u,+au2+ ..., v = v,+av2+ ..., 
p = p,+ap2+ ... , p = p,+ap2+ ... . 

These series are substituted into (5)-(8) and terms of like order are equated to 
give 

(9) 

(10) 

P1 = ir,% = aPlPY, 

p2 = i{r1(u2 - v1 cot 8)  + r2ul}, 

r,u2+r2u, = -ip2+icot8 

ap2/ay = pz + ir, v1 tan 8, (12) 

rlvl = i(8p,/8x+pl). (13) 

pz and u2 are eliminated between (10) and (11) and the resulting equation is 
written in terms of p,: 

This equation may be integrated across the wave to yield 

m 

ry4 [ p,dy = Je-*t, 
J --a0 

where J is a dimensionless constant which is proportional to the momentum 
flux. Equation (14) may be written as 

where X = 1: vl(X) dE with v1 = y&,. 

A solution of the form p,ryB = Re {X-*f(q) e-it}, 

where7 = y/X*, satisfies the momentum integral equation and yields the ordinary 
differential equation 

3f”’ + i(qf’ +f)  = 0, (16) 
32 F L M  54. 
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-0.2 I- 

which has the integral solution 

j = j O0 exp ( - ~ 3 )  exp ( i ~ y )  dK. 
0 

If the real functions cm(y) and s,(y) are defined by the relation 

c, + is, = IOm Kmexp ( - ~ 3 )  exp ( i ~ y )  d ~ ,  

then the dimensionless variables have the following solutions : 

p l r l+  = X-+ (co cos t + so sin t ) ,  

vlrt = x-*( -c,sin t +s, cos t )  + &x-+ ( -co sint+so cos t). 

(18) 

(20) 

u l r t  = X-4 (c,cost+s,sint), (19) 

Under the Boussinesq approximation rl would be unity, X would be replaced 
by x, and the last term in (20) would be absent. 

The functions c, and s, when m > 2 may be expressed in terms of c,,, cl, so and 
sl, which are shown in figure 2. As so is an odd function it makes no contribution to 
the dimensionless momentum flux, and 

J = 2 ~ o m c , d q  = n 

by Fourier's integral theorem. 
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FIGURE 3. The similarity displacement profiles. 
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FIGURE 4. The phase velocity of the nodes and antinodes. 
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FIGURE 5. The rate of spread of the internal wave. The edge of the ray, given by 1111 = v*, 
is plotted in the co-ordinate system (Az’,Ay’), where A = ( 2 v * - 1 w 0 c o s ~ ) ~ .  The displace- 
ment envelope a2 is shown for values of A d  = 100 and 200. The scale mark represents 
I0 units of distance and & unit of amplitude. vo is constant. 

Most of the discussion is couched in terms of the particle displacements [ 
parallel to the Ox axis. To the order of the solution, the dimensionless displace- 
ment, z = p sin 8, is given by 

2 = X-b,+{c, sin t - s1 cos t}. (21) 

Figure 3 shows the similarity displacement profile a t  several values of t. The 
points of constant phase move in the direction of increasing 7, that is, towards 
the horizontal level of the disturbance, at a rate which depends on both the 
position and the phase. For example, the nodes and the antinodes, the points 
at which c1 sin t - s1 cost = 0 and c2 cos t + sz sin t = 0, have dimensionless phase 
velocities, vp = Xi ar/at, given by 

vp = X-5E2,(ClC2 +s,s,)-l 

and vp = X+E2,(C,C3S s2s3)-1, 

where E,,(q) = (ck +&)* is the envelope. These functions are presented in 
figure 4. 

The locus of points of constant 7 is given by 

y’ = 7 (x’v*/2wo cos 8)-5. (22 )  

The wave width increases indefinitely as 8 approaches in and tends to a finite 
limit as f? tends to zero. However the conditions under which the solution is valid 
are outlinedin appendix A, where it is shown that the boundary-layer approxima- 
tion fails near these limits. The inviscid solution with the perturbations confined 
to the Ox axis is recovered in the limit v* + 0. 

The rate of spread of the band containing the energy and the attenuation of the 
particle displacements is illustrated in figure 5. This shows the locus (22) evaluated 
at 171 = 7” and some examples of the envelope5 of the particle displacements. 7” 
is the value of for which El(p*)/El(0) = 0.1. When v1 is constant the variation 
in amplitude with distance along the ray is given by 
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FIGURE 6. The effects of viscosity stratification on the maximum displacements along 
the centre of the wave. 

The amplitude attenuates with increasing depth and initially decreases with 
increasing altitude, reaching a minimum value a t  &, = $, after which it in- 
creases, eventually leading to an exponential breakdown in the linear approxima- 
tion. The linear approximation also fails near the disturbance (see appendix A). 

The effects of variations in the background viscosity may be estimated by 
assuming a simple power law relation between viscosity and density: v1 = r:. 
For values of n + 0 this yields X = (I/.) [i - exp ( - nx)] ,  and the amplitude varia- 
tion is given by 

2max/E1(~) = [ (I/.) [i - exp ( - nx)]-+exp ( - +x)l. 

Some examples of this function are presented in figure 6, which also shows the 
case n = 0 discussed earlier. A decrease in v,, (i.e. n 0 as x 0) results in a de- 
crease in the wave width and an increase in the wave amplitude, such that 
the balance between the viscous shear and the pressure force is maintained. As 
far as the linear approximation is concerned, the critical value of n is - 8,  when 
2max/El(0) asymptotes to (Q)+  as x -++co. The wave amplifies or attenuates as 
x -+ + co depending on whether n 

Thomas (1971) has considered the case of an isothermal atmosphere, which 
corresponds to the incompressible solution for n = - 1 with the wave width and 
the wave amplitude increased by the factor [y / (y  - 1)]3, where y is the ratio of the 
specific heats. I n  view of the above results it is concluded that the waves decay 
with increasing altitude. Thomas has also shown that the solution can accommo- 
date thermal and solute diffusion in liquids. 

- Q and attenuates as x -+ - co. 

3. Experiments 
A circular cylinder was mounted in a water tank which was filled with B con- 

stant gradient stratified salt solution. A sketch of the apparatus is shown in 
Mowbray & Rarity (1967). A small electric motor forced the model to oscillate 
normal to its longitudinal axis. The model was positioned to yield the maximum 
length of ray before interception by waves reflected from the walls of the tank. 



502 N .  H .  Thomas and T. N .  Stevenson 

I I I I 

0.5 1.0 1.5 2.0 2.5 -- 
sx,/sxg 

50 100 150 

xo (=) 

FIGURE 7. Particle displacement measurements for a 9.5 mm diameter cylinder oscillating 
horizontally with a period of 8-3 s and an amplitude of 3.0mm. (a)  The mean displacement 
envelopes compared with the similarity profile. ( b )  The wave width variation with altitude. 
(c)  The ray path. (d )  The attenuation rate. The straight lines are from the theory. 

A travelling microscope was used to measure the displacement of neutrally buoy- 
ant oil drops formed from a mixture of di-ethyl pthalate ( p  = 1.12g and 
mesitylene ( p  = 0.86g~m-~).  The model amplitude was adjusted to produce 
particle displacements which were typically 0.5 mm and therefore large com- 
pared with the diameter of the oil drops, about 0*02mm, and the accuracy 
( 'I 0.01 mm) of measuring their displacement. The major source of experimental 
error was the level of the general disturbance, about 0.05 mm, produced by the 
reflected waves and the oscillating viscous mixing layer at  the level of the body. 

The region in which measurements were taken was small compared with the 
stratification height p-' so the experimental results can be reasonably compared 
with the solution of the Boussinesq equations. The maximum displacements, [, 
were recorded at  particular points in the ray during a series of horizontal traverses, 
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FIGURE 8. Phase velocity measurements compared with the theoretical nodal 

and antinodal phase velocities. ---, node; ---- , antinode. 

which, with the flow visualization technique employed, were more convenient 
than traverses normal to the ray path. In  figure 7 ( a )  [/crnax is plotted against 
Sxo/cYx~, where 26x, is the horizontal distance between points with the same [, 
and 2 8 3  is the value of 2% for which [/Ernax = 0.6. The validity of making this 
comparison is discussed in appendix B. The agreement between theory and 
experiment is good. The variation across the ray of the inclination of the particle 
paths to the horizontal was greater than predicted by the theory and was 
possibly due to the general disturbance produced by the body. 

Theoretically the variation of @ with altitude is given approximately by the 
equations (see appendix B) 

(pv*-lw,sin 2O)& (el?*) sin0 = (py,)); El(7j*)/El(0) = 0.6. (23) 

This is compared with the experimental results in figure 7 (b ) ,  in which the altitude 
is measured from the position at which the ray appears to originate, the virtual 
origin. The linearity of the plot gives support to the choke of similarity variable. 

The linear density distribution produces an inhomogeneity with respect to 
wo, causing the ray path to bend slightly towards the horizontal. The effect is 

-- 
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figure 7 (c), which compares the co-ordinates of the maximum displacement &,, 
with the theoretical ray path. 

The experimental values of [/3,&,,/El( O)]-4 versus (/3yo)* are shown in figure 
7 (d) .  The linear plot supports the theoretical attenuation rate. Equating the 
measured slope with the theoretical value of a-hcos0 we obtain a N 7 x 
In  the theory it was assumed that a < a, and as a is approximately 2 x in 
the experiments u is two orders of magnitude less than a. 

The dimensional phase velocity vk is given by 

vk = x+ v,(~w~v*xr)4sec*6sin8. ( 2 4  

Figure 4 shows that, near the centre of the wave, the dimensionless phase velocity 
up is approximately 1*4x* for the nodes and 1 - 1 5 d  for the antinodes. The anti- 
nodal phase velocities were estimated from the schlieren image by timing the 
movement of the boundary between the light and dark regions at  various posi- 
tions in the wave. In  figure 8 the measurements are shown to compare quite well 
with the theory. 

4. Conclusions 
Experimental results in a linearly stratified salt solution support the main 

features of the theoretical solution for viscous internal waves. Maximum dis- 
placements, attenuation rates and phase velocity all compare quite well with the 
theory but no time-dependent displacement profiles have been measured. 

Acknowledgement is made to the Ministry of Technology, who supported this 
work. N. H. Thomas was in receipt of a Science Research Council maintenance 
grant. 

Appendix A 

obtained from the momentum integral equation, which takes the form 
An estimate of the error introduced by neglecting the nonlinear terms is 

(r,*pl + aa-lu2 tan 0) dy 21 Je-it. L 
The error, estimated from the temporal root-mean-square (r.m.s.) contribution 
of the nonlinear term to  the r.m.s. momentum flux, is less than 10 yo when 

or, after evaluating the integral using the first-order solution and inverting the 
condition, when 

(25) 
The boundary-layer approximation should be reasonable when 

aIv/uI (cot0,tanO) < 0-1 (26) 

and &xlyl cot8 < 0.1. (27) 
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FIGURE 9. Validity of the similarity solution when a = 10-6sin 6' and a3 = lo-* tan 8 sin 8. 
_ _ _ _ _ -  ,46agcot*8;----- , 2 . 5 ~ - 1  tan 8; __. ,46 a3 t a d  8. The boundaries represent 
the lower limits of 121 for which the solution is valid. 

The magnitude of 1v/u1 may be estimated from 

vr.m.s./~r.m.s. = IxI-'EJEI + 6IxI'Eo/E1* 

The last term will dominate at large 1x1 but the conditions (26) and (27) would be 
satisfied when 1x1 < lo3 for the present experimental values of a. The maximum 
value of E,/E, is 1.28 and E,/E, = 171 at large 171, so conditions (26) and (27) may 
be written as 1.28a1~13 (tan8, cot 8) < 0.1 and &x1yI (tan 8, cot 8)  < 0.1. The 
second pair of conditions is satisfied when Iyl < yB, say, so the integral con- 

straint must be truncated a t  IyI = yB = ~~1x1). Thetruncation error 2J-1 IT; co d7 

is less than 10% when rB > 7" = 5.85, or when 3alxl* (tan8,cotB) < 0.1. For 
values of 1x1 < 0.43 this is less restrictive than the first pair of conditions, which 
inverts to 

(28) 

The boundaries of 1x1 implied by (25) and (28) are shown in figure 9 for typical 
laboratory values of a and a. For the present experiments the largest error in the 
similarity solution is approximately 10 yo and occurs for the lowest altitude 
traverse. 

1x1 > 46a*(tan* 8, cod 8). 

Appendix B 
The particle displacements were measured at various positions on a horizontal 

plane. If  the horizontal traverse crosses the x' axis at xi then a point in the 
traverse is given by 

(x', y') = (xi( 1 + e), axsin O ) ,  

where ex; = 6x, cos 6' and 6xo is the horizontal co-ordinate measured from xi. 
Equation (22) may be written as 

Sx,( 1 + e)-* = KV,  where K = ( V * Y ~ / W ,  sin 20)* cosec 8. 
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K is constant for each horizontal traverse. The similarity envelope is given by 

E ~ ( T ) / B ~ ( o )  = (1 +S)' t/Cmax- 

If the local co-ordinates of the two points with equal values of c are ax: and 
- ax; with the corresponding c and 7 values c+ and - s-and T+ and - 7-, and if the 
mean values are indicated by bars, i.e. 

- 
axo = *(SX(j- +ax,), 

6x,[ l -*(€+-s-)+O(E2)]  = Kr/ 

then expansion of the 1 + 6 terms yields 

and El(?j)/El(o) (QCmax) [I+ *(sf-€-) + o(a2)l* 
Under the experimental conditions, an error of less than 5 yo is introduced when 
these expressions are truncated to 6x, = ~7 and El(q)/El(0) = 
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